The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150836
PDF

Stock Price Forecasting with Optimized Long Short-Term Memory Network with Manta Ray Foraging Optimization

Author 1: Zhongpo Gao
Author 2: Junwen Jing

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 8, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The stock market is a financial marketplace where investors may participate through the acquisition and sale of stocks in publicly traded companies. Predicting stock prices in the securities sector may be challenging due to the intricate nature of the subject, which necessitates a comprehensive grasp of several interconnected factors. Numerous factors, including politics, society, as well as the economy, have an impact on the stock market. The primary objective of financial market investing is to exploit larger profits. Financial markets provide many opportunities for market analysts, investors, and researchers in several industries due to significant technology advancements. Conventional approaches encounter difficulties in capturing the complex, non-linear connections that exist in market data, which requires the implementation of sophisticated artificial intelligence models. This paper presents a new approach to tackling certain issues by suggesting a unique model. It combines the long short-term memory method and Empirical Mode Decomposition with the Manta Ray Foraging Optimization. When tested in the current study's dynamic stock market, the EMD-MRFO-LSTM model outperformed other models regarding performance and efficiency. The Nasdaq index data from January 2, 2015, to June 29, 2023, were used in this study. The findings demonstrate how the suggested model is capable of making precise stock price predictions. The suggested model offers a workable approach to studying and predicting stock price time series by obtaining values of 0.9973, 91.99, 71.54, and 0.57, for coefficient of determination (R^2), root means square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), respectively. Compared to other methods currently in use, the proposed model has a higher accuracy in forecasting and is more physically relevant to the dynamic stock market, according to the outcomes of the experiment.

Keywords: Stock price; hybrid forecasting method; Manta Ray Foraging Optimization; empirical mode decomposition; Nasdaq index

Zhongpo Gao and Junwen Jing, “Stock Price Forecasting with Optimized Long Short-Term Memory Network with Manta Ray Foraging Optimization” International Journal of Advanced Computer Science and Applications(IJACSA), 15(8), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150836

@article{Gao2024,
title = {Stock Price Forecasting with Optimized Long Short-Term Memory Network with Manta Ray Foraging Optimization},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150836},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150836},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {8},
author = {Zhongpo Gao and Junwen Jing}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org