The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150919
PDF

DeeplabV3+ Model with CBAM and CSPM Attention Mechanism for Navel Orange Defects Segmentation

Author 1: Guo Jinmei
Author 2: Wan Nurshazwani Wan Zakaria
Author 3: Wei Bisheng
Author 4: Muhammad Azmi Bin Ayub

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 9, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Accurate defect detection of navel oranges is the key to ensuring the quality of navel oranges and extending their storage life. An improved DeeplabV3+ model integrating attention mechanism is proposed to increase the current low recognition accuracy and slow detection speed of defect detection in navel oranges grading and sorting process. The improved lightweight backbone network HECA-MobileV3 is applied in the DeeplabV3+ model to reduce the amount of computational data and improve the image processing speed. In addition, the Convolutional Block Attention Module (CBAM) and Channel Space Parallel Mechanism CSPM are integrated to the DeeplabV3+ model. ASPP structure is redesigned and the low feature extraction network is optimized to enhance the capture of target edge information and improve the segmentation effect of the model. Experimental results show that the proposed model exhibits a better MIoU and MPA with 89.50% and 94.02%, respectively, while reducing parameters by 49.42M and increasing detection speed by 55.6fps, which are 7.27% and 3.51% higher than the basic model. The results are superior than U-Net, SegNet and PSP-Net semantic segmentation networks. As a results, the proposed method provides better real-time performance, which meets the requirements of industrial production for detection accuracy and speed.

Keywords: Navel oranges; defect detection; DeeplabV3+; HECA-MobileNetV3; CBAM attention mechanism; CSPM mechanism

Guo Jinmei, Wan Nurshazwani Wan Zakaria, Wei Bisheng and Muhammad Azmi Bin Ayub, “DeeplabV3+ Model with CBAM and CSPM Attention Mechanism for Navel Orange Defects Segmentation” International Journal of Advanced Computer Science and Applications(IJACSA), 15(9), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150919

@article{Jinmei2024,
title = {DeeplabV3+ Model with CBAM and CSPM Attention Mechanism for Navel Orange Defects Segmentation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150919},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150919},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {9},
author = {Guo Jinmei and Wan Nurshazwani Wan Zakaria and Wei Bisheng and Muhammad Azmi Bin Ayub}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org