The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150942
PDF

Elevating Grape Detection Precision and Efficiency with a Novel Deep Learning Model

Author 1: Xiaoli Geng
Author 2: Yaru Huang
Author 3: Yangxu Wang

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 9, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the domain of modern agricultural automation, precise grape detection in orchards is pivotal for efficient harvesting operations. This study introduces the Grapes Enhanced Feature Detection Network (GEFDNet), leveraging deep learning and convolutional neural networks (CNN) to enhance target detection capabilities specifically for grape detection in orchard environments. GEFDNet integrates an innovative Enhanced Feature Fusion Module (EFFM) into an advanced YOLO architecture, employing a 16x downsampling Backbone for feature extraction. This approach significantly reduces computational complexity while capturing rich spatial hierarchies and accelerating model inference, which is crucial for real-time object detection. Additionally, an optimized dual-path detection structure with an attention mechanism in the Neck enhances the model's focus on targets and robustness against dense grape detection and complex background interference, a common challenge in computer vision applications. Experimental results demonstrate that GEFDNet achieves at least a 3.5% improvement in mean Average Precision (mAP@0.5), reaching 89.4%. It also has a 9.24% reduction in parameters and a 10.35 FPS increase in frame rate compared to YOLOv9. This advancement maintains high precision while improving operational efficiency, offering a promising solution for the development of automated harvesting technologies. The study is publicly available at: https://github.com/YangxuWangamI/GEFDNet.

Keywords: Computer vision; deep learning; Convolutional Neural Networks (CNN); real-time object detection; dual-path detection structure

Xiaoli Geng, Yaru Huang and Yangxu Wang, “Elevating Grape Detection Precision and Efficiency with a Novel Deep Learning Model” International Journal of Advanced Computer Science and Applications(IJACSA), 15(9), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150942

@article{Geng2024,
title = {Elevating Grape Detection Precision and Efficiency with a Novel Deep Learning Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150942},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150942},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {9},
author = {Xiaoli Geng and Yaru Huang and Yangxu Wang}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org