The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160130
PDF

Machine Learning-Based Fifth-Generation Network Traffic Prediction Using Federated Learning

Author 1: Mohamed Abdelkarim Nimir Harir
Author 2: Edwin Ataro
Author 3: Clement Temaneh Nyah

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 1, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The rapid development and advancement of 5G technologies and smart devices are associated with faster data transmission rates, reduced latency, more network capacity, and more dependability over 4G networks. However, the networks are also more complex due to the diverse range of applications and technologies, massive device connectivity, and dynamic network conditions. The dynamic and complex nature of the 5G networks requires advanced and accurate traffic prediction methods to optimize resource allocation, enhance the quality of service, and improve network performance. Hence, there is a growing demand for training methods to generate high-quality predictions capable of generalizing to new data across various parties. Traditional methods typically involve gathering data from multiple base stations, transmitting it to a central server, and performing machine learning operations on the collected data. This work suggests a hybrid model of Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and federated learning applied to 5G network traffic prediction. The model is assessed on one-step predictions, comparing its performance with standalone LSTM and GRU models within a federated learning environment. In evaluating the predictive performance of the proposed federated learning architecture compared to centralized learning, the federated learning approach results in lower Root Mean Square error (RMSE) and Mean Absolute Errors (MAE) and a 2.25 percent better Coefficient of Determination (R squared).

Keywords: 5G Mobile network; machine learning; federated learning; parallel hybrid LSTM+GRU; network traffic prediction; centralized learning; dynamic network condition

Mohamed Abdelkarim Nimir Harir, Edwin Ataro and Clement Temaneh Nyah, “Machine Learning-Based Fifth-Generation Network Traffic Prediction Using Federated Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 16(1), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160130

@article{Harir2025,
title = {Machine Learning-Based Fifth-Generation Network Traffic Prediction Using Federated Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160130},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160130},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {1},
author = {Mohamed Abdelkarim Nimir Harir and Edwin Ataro and Clement Temaneh Nyah}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org