The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160161
PDF

Enhancing COVID-19 Detection in X-Ray Images Through Deep Learning Models with Different Image Preprocessing Techniques

Author 1: Ahmad Nuruddin bin Azhar
Author 2: Nor Samsiah Sani
Author 3: Liu Luan Xiang Wei

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 1, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The identification of COVID-19 using chest X-ray (CXR) images plays a critical role in managing the pandemic by providing a rapid, non-invasive, and accessible diagnostic tool. This study evaluates the impact of different image preprocessing techniques on the performance of deep learning models for COVID-19 classification based on COVID-19 Radiography Database, which includes 10,192 normal CXR images, 6012 lung opacity (non-COVID lung infection) images, and 1345 viral pneumonia images. Along with the images, corresponding lung masks are also included to aid in the segmentation and analysis of lung regions. Specifically, three convolutional neural network (CNN) models were developed, each using a distinct preprocessing method: Contrast Limited Adaptive Histogram Equalization (CLAHE), traditional histogram equalization, and no preprocessing. The results revealed that while the CLAHE-enhanced model achieved the highest training accuracy (93.26%) and demonstrated superior stability during training, it showed lower performance in the validation phase, with validation accuracy of 91.31%. In contrast, the model with no preprocessing, which exhibited slightly lower training accuracy (92.98%), outperformed the CLAHE model during validation, achieving the highest validation accuracy of 91.50% and the lowest validation loss. The histogram equalization model demonstrated performance similar to that of CLAHE but with slightly higher validation loss and accuracy compared to the unprocessed model. These findings suggest that while CLAHE excels in enhancing image details during training, it may lead to overfitting and reduced generalization ability. In contrast, the model without preprocessing showed the best generalization and stability, indicating that preprocessing techniques should be chosen carefully to balance feature enhancement with the need for generalization in real-world applications. This study underscores the importance of selecting appropriate image preprocessing techniques to enhance deep learning models' performance in medical image classification, particularly for COVID-19 detection. Histogram Equalization The results contribute to ongoing efforts to optimize diagnostic tools using AI and image processing.

Keywords: X-ray; COVID-19; image enhancement; Contrast Limited Adaptive Histogram Equalization; Histogram Equalization

Ahmad Nuruddin bin Azhar, Nor Samsiah Sani and Liu Luan Xiang Wei, “Enhancing COVID-19 Detection in X-Ray Images Through Deep Learning Models with Different Image Preprocessing Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 16(1), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160161

@article{Azhar2025,
title = {Enhancing COVID-19 Detection in X-Ray Images Through Deep Learning Models with Different Image Preprocessing Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160161},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160161},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {1},
author = {Ahmad Nuruddin bin Azhar and Nor Samsiah Sani and Liu Luan Xiang Wei}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org