The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160164
PDF

Segmentation of Nano-Particles from SEM Images Using Transfer Learning and Modified U-Net

Author 1: Sowmya Sanan V
Author 2: Rimal Isaac R S

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 1, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Nanomaterials, owing to their distinctive features, are crucial across numerous scientific domains, especially in materials science and nanotechnology. Precise segmentation of Scanning Electron Microscope (SEM) images is essential for evaluating attributes such as nanoparticle dimensions, morphology, and distribution. Conventional image segmentation techniques frequently prove insufficient for managing the intricate textures of SEM images, resulting in a laborious and imprecise process. In this research, a modified U-Net architecture is presented to tackle this challenge, utilizing a ResNet50 backbone pre-trained on ImageNet. This model utilizes the robust feature extraction abilities of ResNet50 alongside the effective segmentation performance of U-Net, hence improving both accuracy and computational efficiency in TiO2 nanoparticle segmentation. The suggested model was assessed using performance metrics including accuracy, precision, recall, IoU, and Dice Coefficient. The results indicated a high segmentation accuracy, demonstrated by a Dice score of 0.946 and an IoU of 0.897, with little variability reflected in standard deviations of 0.002071 and 0.003696, respectively, over 200 epochs. The comparison with existing methods demonstrates that the proposed model surpasses previous approaches by attaining enhanced segmentation accuracy. The modified U-Net design serves as an excellent technique for accurate nanoparticle segmentation in SEM images, providing substantial enhancements compared to traditional approaches. This progress indicates the model's potential for wider applications in nanomaterial research and characterization, where precise and efficient segmentation is essential for analysis.

Keywords: Nanomaterial; segmentation; ResNet 50; modified UNet; transfer learning; SEM

Sowmya Sanan V and Rimal Isaac R S, “Segmentation of Nano-Particles from SEM Images Using Transfer Learning and Modified U-Net” International Journal of Advanced Computer Science and Applications(IJACSA), 16(1), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160164

@article{V2025,
title = {Segmentation of Nano-Particles from SEM Images Using Transfer Learning and Modified U-Net},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160164},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160164},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {1},
author = {Sowmya Sanan V and Rimal Isaac R S}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org