The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.01602131
PDF

Temperature Prediction for Photovoltaic Inverters Using Particle Swarm Optimization-Based Symbolic Regression: A Comparative Study

Author 1: Fabian Alonso Lara-Vargas
Author 2: Jesus Aguila-Leon
Author 3: Carlos Vargas-Salgado
Author 4: Oscar J. Suarez

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 2, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Accurate temperature modeling is crucial for maintaining the efficiency and reliability of solar inverters. This paper presents an innovative application of symbolic regression based on particle swarm optimization (PSO) for predicting the temperature of photovoltaic inverters, offering a novel approach that balances accuracy and computational efficiency. The study evaluates the performance of a PSO-based symbolic regression model compared to multiple linear regression (MLR) and a symbolic regression model based on genetic algorithms (GA). The models were developed using a dataset that included inverter temperature, active power, and DC bus voltage, collected over a year in hourly intervals from a rooftop photovoltaic system in a tropical region. The dataset was divided, with 70% used for training and the remaining 30% for testing. The symbolic regression model based on PSO demonstrated superior performance, achieving lower values of the root mean square error (RMSE) and mean absolute error (MAE) of 3.97 and 3.31, respectively. Furthermore, the PSO-based model effectively captured the nonlinear relationships between variables, outperforming the MLR model. It also exhibited greater computational efficiency, requiring fewer iterations than traditional symbolic regression approaches. These findings open new possibilities for real-time monitoring of photovoltaic inverters and suggest future research directions, such as generalizing the PSO model to different environmental conditions and inverter types.

Keywords: Particle swarm optimization; photovoltaic inverters; multiple linear regression; symbolic regression; temperature pre-diction

Fabian Alonso Lara-Vargas, Jesus Aguila-Leon, Carlos Vargas-Salgado and Oscar J. Suarez, “Temperature Prediction for Photovoltaic Inverters Using Particle Swarm Optimization-Based Symbolic Regression: A Comparative Study” International Journal of Advanced Computer Science and Applications(IJACSA), 16(2), 2025. http://dx.doi.org/10.14569/IJACSA.2025.01602131

@article{Lara-Vargas2025,
title = {Temperature Prediction for Photovoltaic Inverters Using Particle Swarm Optimization-Based Symbolic Regression: A Comparative Study},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.01602131},
url = {http://dx.doi.org/10.14569/IJACSA.2025.01602131},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {2},
author = {Fabian Alonso Lara-Vargas and Jesus Aguila-Leon and Carlos Vargas-Salgado and Oscar J. Suarez}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org