The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160230
PDF

Enhancing Recurrent Neural Network Efficacy in Online Sales Predictions with Exploratory Data Analysis

Author 1: Erni Widiastuti
Author 2: Jani Kusanti
Author 3: Herwin Sulistyowati

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 2, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Online sales forecasting has become an essential aspect of effective business planning in the digital era. The widespread adoption of digital transformation has enabled companies to collect substantial datasets related to consumer behavior, market trends, and sales drivers. This study attempts to uncover patterns and predict sales growth by utilizing product images and their associated filenames as input. To achieve this, we use EDA combined with LSTM and Gated Recurrent Unit (GRU), which excel in processing sequential data. However, the performance of these networks is significantly affected by the quality of data and the preprocessing methods applied. This study highlights the importance of Exploratory Data Analysis (EDA) and Ensemble Methods in enhancing the efficacy of RNNs for online sales forecasting. EDA plays a crucial role in identifying significant patterns such as trends, seasonality, and autocorrelation while addressing data irregularities such as missing values and outliers. These findings show that integrating EDA substantially improves the performance metrics of RNN, as indicated by the reduction in loss and mean absolute error (MAE) values across training epochs (e.g. loss: 0.0720, MAE: 0.1918 at epoch 15). These results indicate that EDA improves the accuracy, stability, and efficiency of the model, allowing RNN to provide more reliable sales predictions while minimizing the risk of overfitting.

Keywords: Exploratory data analysis; recurrent neural networks; online sales prediction; sequential data; trend patterns

Erni Widiastuti, Jani Kusanti and Herwin Sulistyowati, “Enhancing Recurrent Neural Network Efficacy in Online Sales Predictions with Exploratory Data Analysis” International Journal of Advanced Computer Science and Applications(IJACSA), 16(2), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160230

@article{Widiastuti2025,
title = {Enhancing Recurrent Neural Network Efficacy in Online Sales Predictions with Exploratory Data Analysis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160230},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160230},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {2},
author = {Erni Widiastuti and Jani Kusanti and Herwin Sulistyowati}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org