The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160234
PDF

Improving Air Quality Prediction Models for Banting: A Performance Evaluation of Lasso, mRMR, and ReliefF

Author 1: Siti Khadijah Arafin
Author 2: Suvodeep Mazumdar
Author 3: Nurain Ibrahim

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 2, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This study explores the effectiveness of various feature selection methods in forecasting next-day PM2.5 levels in Banting, Malaysia. The accurate prediction of PM2.5 concentrations is crucial for public health, enabling authorities to take timely actions to mitigate exposure to harmful pollutants. This study compares three feature selection methods: Lasso, mRMR, and ReliefF using a dataset consisting of 43,824 data points collected from Banting air quality monitoring stations (CA22B). The dataset includes ten variables, including pollutant concentrations such as O3, CO, NO2, SO2, PM10, and PM2.5, along with meteorological parameters such as temperature, humidity, wind direction and wind speed. The results revealed that Lasso outperformed both mRMR and ReliefF in terms of various performance metrics, including accuracy, sensitivity, precision, F1 score, and AUROC. Lasso demonstrated superior ability to handle multicollinearity, significantly improving the interpretability of the model by retaining only the most important variables. This suggests that the effectiveness of feature selection methods is highly dependent on the characteristics of the dataset, such as correlations among features. Thus, the top eight features to predict PM2.5 levels in Banting selected by Lasso method are relative humidity, PM2.5, wind direction, ambient temperature, PM10, NO2, wind speed, and O3. The findings from this study contribute to the growing body of knowledge on air quality prediction models, highlighting the importance of selecting the appropriate feature selection method to achieve the best model performance. Future research should explore the application of Lasso method in other geographical regions, including urban, suburban and rural areas, to assess the generalizability of the results.

Keywords: PM2.5 concentration; feature selection; Lasso; mRmR; RBFNN; ReliefF

Siti Khadijah Arafin, Suvodeep Mazumdar and Nurain Ibrahim, “Improving Air Quality Prediction Models for Banting: A Performance Evaluation of Lasso, mRMR, and ReliefF” International Journal of Advanced Computer Science and Applications(IJACSA), 16(2), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160234

@article{Arafin2025,
title = {Improving Air Quality Prediction Models for Banting: A Performance Evaluation of Lasso, mRMR, and ReliefF},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160234},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160234},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {2},
author = {Siti Khadijah Arafin and Suvodeep Mazumdar and Nurain Ibrahim}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org