The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160204
PDF

Resampling Imbalanced Healthcare Data for Predictive Modelling

Author 1: Manoj Yadav Mamilla
Author 2: Ronak Al-Haddad
Author 3: Stiphen Chowdhury

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 2, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Imbalanced datasets pose significant challenges in healthcare for developing accurate predictive models in medical diagnostics. In this work, we explore the effectiveness of combining resampling methods with machine learning algorithms to enhance prediction accuracy for imbalanced heart and lung disease datasets. Specifically, we integrate undersampling techniques such as Edited Nearest Neighbours (ENN) and In-stance Hardness Threshold (IHT) with oversampling methods like Random Oversampling (RO), Synthetic Minority Oversampling Technique (SMOTE), and Adaptive Synthetic Sampling (ADASYN). These resampling strategies are paired with classifiers including Decision Trees (DT), Random Forests (RF), K-Nearest Neighbours (KNN), and Support Vector Machines (SVM). Model performance is evaluated using accuracy, precision, recall, F1 score, and the Area Under the Curve (AUC). Our results show that tailored resampling significantly boosts machine learning model performance in healthcare settings. Notably, SVM with ENN undersampling markedly improves accuracy for lung cancer predictions, while SVM and RF with IHT achieve higher validation accuracies for both diseases. Random oversampling shows variable effectiveness across datasets, whereas SMOTE and ADASYN consistently enhance accuracy. This study underscores the value of integrating strategic resampling with machine learning to improve predictive reliability for imbalanced healthcare data.

Keywords: Imbalanced data; resampling; machine learning; healthcare

Manoj Yadav Mamilla, Ronak Al-Haddad and Stiphen Chowdhury, “Resampling Imbalanced Healthcare Data for Predictive Modelling” International Journal of Advanced Computer Science and Applications(IJACSA), 16(2), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160204

@article{Mamilla2025,
title = {Resampling Imbalanced Healthcare Data for Predictive Modelling},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160204},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160204},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {2},
author = {Manoj Yadav Mamilla and Ronak Al-Haddad and Stiphen Chowdhury}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org