The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160284
PDF

Enhanced Early Detection of Diabetic Nephropathy Using a Hybrid Autoencoder-LSTM Model for Clinical Prediction

Author 1: U. Sudha Rani
Author 2: C. Subhas

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 2, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Early detection and precise prediction are essential in medical diagnosis, particularly for diseases such as diabetic nephropathy (DN), which tends to go undiagnosed at its early stages. Conventional diagnostic techniques may not be sensitive and timely, and hence, early intervention might be difficult. This research delves into the application of a hybrid Autoencoder-LSTM model to improve DN detection. The Autoencoder (AE) unit compresses clinical data with preservation of important features and dimensionality reduction. The Long Short-Term Memory (LSTM) network subsequently processes temporal patterns and sequential dependency, enhancing feature learning for timely diagnosis. Clinical and demographic information from diabetic patients are included in the dataset, evaluating variables such as age, sex, type of diabetes, duration of disease, smoking, and alcohol use. The model is done using Python and exhibits better performance compared to conventional methods. The Hybrid AE-LSTM model proposed here attains an accuracy of 99.2%, which is a 6.68% improvement over Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression. The findings demonstrate the power of deep learning in detecting DN early and accurately and present a novel tool for proactive disease control among diabetic patients.

Keywords: Autoencoder-LSTM; Diabetic nephropathy; early disease detection; machine learning; clinical data analysis; hybrid models

U. Sudha Rani and C. Subhas, “Enhanced Early Detection of Diabetic Nephropathy Using a Hybrid Autoencoder-LSTM Model for Clinical Prediction” International Journal of Advanced Computer Science and Applications(IJACSA), 16(2), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160284

@article{Rani2025,
title = {Enhanced Early Detection of Diabetic Nephropathy Using a Hybrid Autoencoder-LSTM Model for Clinical Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160284},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160284},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {2},
author = {U. Sudha Rani and C. Subhas}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org