The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.01603113
PDF

Image-Based Air Quality Estimation Using Convolutional Neural Network Optimized by Genetic Algorithms: A Multi-Dataset Approach

Author 1: Arshad Ali Khan
Author 2: Mazlina Abdul Majid
Author 3: Abdulhalim Dandoush

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 3, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Air pollution poses significant threats to human health and the environment, making effective monitoring increasingly essential. Traditional methods using fixed monitoring stations have challenges related to high costs and limited coverage. This paper proposes a new approach using convolutional neural networks with genetic algorithms for estimating air quality directly from images. The convolutional neural network is optimized using genetic algorithms, which dynamically tune hyper-parameters such as learning rate, batch size, and momentum to improve performance and generalizability across diverse environmental conditions. Our approach improves performance and reduces the risk of overfitting, thus ensuring balanced and robust results. To mitigate overfitting, we implemented dropout layers, batch normalization, and early stopping, significantly enhancing the model’s generalization capability. Specifically, three different open-access datasets were combined into a single training dataset, capturing extensive temporal, spatial, and environmental variability. Extensive testing of the model performance was conducted with a broad set of metrics, including precision, recall, and F1 score. The results demonstrate that our model not only achieves high accuracy but also maintains well-balanced performance across all metrics, ensuring robust classification of different air quality levels. For instance, the model achieved a precision of 0.97, a recall of 0.97, and an overall accuracy of 0.9544 percent, outperforming baseline methods significantly in all metrics. These improvements underscore the effectiveness of Genetic Algorithms in optimizing the model.

Keywords: Convolutional neural network; Genetic Algorithm; air quality estimation; image processing

Arshad Ali Khan, Mazlina Abdul Majid and Abdulhalim Dandoush, “Image-Based Air Quality Estimation Using Convolutional Neural Network Optimized by Genetic Algorithms: A Multi-Dataset Approach” International Journal of Advanced Computer Science and Applications(IJACSA), 16(3), 2025. http://dx.doi.org/10.14569/IJACSA.2025.01603113

@article{Khan2025,
title = {Image-Based Air Quality Estimation Using Convolutional Neural Network Optimized by Genetic Algorithms: A Multi-Dataset Approach},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.01603113},
url = {http://dx.doi.org/10.14569/IJACSA.2025.01603113},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {3},
author = {Arshad Ali Khan and Mazlina Abdul Majid and Abdulhalim Dandoush}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org