The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160392
PDF

Machine Learning-Driven Preventive Maintenance for Fibreboard Production in Industry 4.0

Author 1: Sirirat Suwatcharachaitiwong
Author 2: Nikorn Sirivongpaisal
Author 3: Thattapon Surasak
Author 4: Nattagit Jiteurtragool
Author 5: Laksiri Treeranurat
Author 6: Aree Teeraparbseree
Author 7: Phattara Khumprom
Author 8: Sirirat Pungchompoo
Author 9: Dollaya Buakum

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 3, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The transition to Industry 4.0 has necessitated the adoption of intelligent maintenance strategies to enhance manufacturing efficiency and reduce operational disruptions. In fibreboard production, conventional preventive maintenance, reliant on fixed schedules, often leads to inefficient resource allocation and unexpected failures. This study proposes a machine learning-driven predictive maintenance (PdM) framework that utilises real-time sensor data and predictive analytics to optimise maintenance scheduling and improve system reliability. The proposed approach is validated using real-world industrial data, where Random Forest and Gradient Boosting regression models are applied to predict machine wear progression and estimate the remaining useful life (RUL) of critical components. Performance evaluation shows that Random Forest outperforms Gradient Boosting, achieving a lower Mean Squared Error (MSE) of 0.630, a lower Mean Absolute Error (MAE) of 0.613, and a higher R-squared score of 0.857. Feature importance analysis further identifies surface grade as a key determinant of equipment wear, suggesting that redistributing production across lower-impact grades can significantly reduce long-term wear and extend machine lifespan. These findings underscore the potential of artificial intelligence in predictive maintenance applications, contributing to the advancement of smart manufacturing in Industry 4.0. This research lays the foundation for further investigations into adaptive, real-time maintenance frameworks, supporting sustainable and efficient industrial operations.

Keywords: Predictive maintenance; machine learning; fibre-board production; operational efficiency; Industry 4.0; smart manufacturing

Sirirat Suwatcharachaitiwong, Nikorn Sirivongpaisal, Thattapon Surasak, Nattagit Jiteurtragool, Laksiri Treeranurat, Aree Teeraparbseree, Phattara Khumprom, Sirirat Pungchompoo and Dollaya Buakum, “Machine Learning-Driven Preventive Maintenance for Fibreboard Production in Industry 4.0” International Journal of Advanced Computer Science and Applications(IJACSA), 16(3), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160392

@article{Suwatcharachaitiwong2025,
title = {Machine Learning-Driven Preventive Maintenance for Fibreboard Production in Industry 4.0},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160392},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160392},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {3},
author = {Sirirat Suwatcharachaitiwong and Nikorn Sirivongpaisal and Thattapon Surasak and Nattagit Jiteurtragool and Laksiri Treeranurat and Aree Teeraparbseree and Phattara Khumprom and Sirirat Pungchompoo and Dollaya Buakum}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org