The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160461
PDF

From Code Analysis to Fault Localization: A Survey of Graph Neural Network Applications in Software Engineering

Author 1: Maojie PAN
Author 2: Shengxu LIN
Author 3: Zhenghong XIAO

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 4, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Graph Neural Networks (GNNs) represent a class of deep machine learning algorithms for analyzing or processing data in graph structure. Most software development activities, such as fault localization, code analysis, and measures of software quality, are inherently graph-like. This survey assesses GNN applications in different subfields of software engineering with special attention to defect identification and other quality assurance processes. A summary of the current state-of-the-art is presented, highlighting important advances in GNN methodologies and their application in software engineering. Further, the factors that limit the current solutions in terms of their use for a wider range of tasks are also considered, including scalability, interpretability, and compatibility with other tools. Some suggestions for future work are presented, including the enhancement of new architectures of GNNs, the enhancement of the interpretability of GNNs, and the design of a large-scale dataset of GNNs. The survey will, therefore, provide detailed insight into how the application of GNNs offers the possibility of enhancing software development processes and the quality of the final product.

Keywords: Graph neural networks; fault localization; code analysis; software quality

Maojie PAN, Shengxu LIN and Zhenghong XIAO, “From Code Analysis to Fault Localization: A Survey of Graph Neural Network Applications in Software Engineering” International Journal of Advanced Computer Science and Applications(IJACSA), 16(4), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160461

@article{PAN2025,
title = {From Code Analysis to Fault Localization: A Survey of Graph Neural Network Applications in Software Engineering},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160461},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160461},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {4},
author = {Maojie PAN and Shengxu LIN and Zhenghong XIAO}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org