The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160492
PDF

Detection and Classification of Intestinal Parasites With Bayesian-Optimized Model

Author 1: Haifa Hamza
Author 2: Kamarul Hawari Ghazali
Author 3: Abubakar Ahmad

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 4, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Automated detection of intestinal parasites in medical imaging enhances diagnostic efficiency and reduces human error. This study evaluates object detection techniques using Faster R-CNN with different backbone architectures such as ResNet, RetinaNet, ResNext and YOLOv8 series for detecting Ascaris lumbricoides and Trichuris trichiura in microscopic images. A dataset of 2000 images was split into training (1500), validation (300), and testing (200). Results show Faster R-CNN with RetinaNet achieves the highest Average Precision (AP) across varying Intersection over Union (IoU) thresholds, making it robust in feature extraction. However, YOLOv8 excels in real-time detection, with YOLOv8n (nano) providing the best trade-off between accuracy and computational efficiency. Bayesian Optimization further improves YOLOv8n, achieving an AP of 99.6% and an Average Recall (AR) of 99.7%, surpassing two-stage architectures. This study highlights the potential of deep learning for automated parasite detection, reducing reliance on manual microscopy. Future research should explore transformer-based models, self-supervised learning, and mobile deployment for real-world clinical applications.

Keywords: Intestinal parasites; faster region convolutional neural network; You Look Only Once (YOLOv8); Bayesian Optimization; medical imaging; object detection

Haifa Hamza, Kamarul Hawari Ghazali and Abubakar Ahmad, “Detection and Classification of Intestinal Parasites With Bayesian-Optimized Model” International Journal of Advanced Computer Science and Applications(IJACSA), 16(4), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160492

@article{Hamza2025,
title = {Detection and Classification of Intestinal Parasites With Bayesian-Optimized Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160492},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160492},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {4},
author = {Haifa Hamza and Kamarul Hawari Ghazali and Abubakar Ahmad}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org