The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2011.020420
PDF

Application Of Extended Kalman Filter For A Free Falling Body Towards Earth

Author 1: Leela Kumari. B
Author 2: Padma Raju. K
Author 3: Chandan .V.Y.V
Author 4: Sai Krishna. R
Author 5: V.M.J. Rao

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 2 Issue 4, 2011.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: State estimation theory is one of the best mathematical approaches to analyze variants in the states of the system or process. The state of the system is defined by a set of variables that provide a complete representation of the internal condition at any given instant of time. Filtering of Random processes is referred to as Estimation, and is a well-defined statistical technique. There are two types of state estimation processes, Linear and Nonlinear. Linear estimation of a system can easily be analyzed by using Kalman Filter (KF) and is used to compute the target state parameters with a priori information under noisy environment. But the traditional KF is optimal only when the model is linear and its performance is well defined under the assumptions that the system model and noise statistics are well known. Most of the state estimation problems are nonlinear, thereby limiting the practical applications of the KF. The modified KF, aka EKF, Unscented Kalman filter and Particle filter are best known for nonlinear estimates. Extended Kalman filter (EKF) is the nonlinear version of the Kalman filter which linearizes about the current mean and covariance. The estimation can be linearised around the current estimate using the partial derivatives to compute estimates even in the face of nonlinear relationships.. The EKF has been considered the standard in the theory of nonlinear state estimation. This paper deals with how to estimate a nonlinear model with Extended Kalman filter (EKF). The approach in this paper is to analyze Extended Kalman filter where EKF provides better probability of state estimation for a free falling body towards earth.

Keywords: Kalman filter; Extended Kalman filter; free fall body; apriori information.

Leela Kumari. B, Padma Raju. K, Chandan .V.Y.V, Sai Krishna. R and V.M.J. Rao, “ Application Of Extended Kalman Filter For A Free Falling Body Towards Earth” International Journal of Advanced Computer Science and Applications(IJACSA), 2(4), 2011. http://dx.doi.org/10.14569/IJACSA.2011.020420

@article{B2011,
title = { Application Of Extended Kalman Filter For A Free Falling Body Towards Earth},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2011.020420},
url = {http://dx.doi.org/10.14569/IJACSA.2011.020420},
year = {2011},
publisher = {The Science and Information Organization},
volume = {2},
number = {4},
author = {Leela Kumari. B and Padma Raju. K and Chandan .V.Y.V and Sai Krishna. R and V.M.J. Rao}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org