The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2012.030929
PDF

Image Denoising using Adaptive Thresholding in Framelet Transform Domain

Author 1: S. Sulochana
Author 2: R.Vidhya

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 3 Issue 9, 2012.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Noise will be unavoidable during image acquisition process and denosing is an essential step to improve the image quality. Image denoising involves the manipulation of the image data to produce a visually high quality image. Finding efficient image denoising methods is still valid challenge in image processing. Wavelet denoising attempts to remove the noise present in the imagery while preserving the image characteristics, regardless of its frequency content. Many of the wavelet based denoising algorithms use DWT (Discrete Wavelet Transform) in the decomposition stage which is suffering from shift variance. To overcome this, in this paper we proposed the denoising method which uses Framelet transform to decompose the image and performed shrinkage operation to eliminate the noise .The framework describes a comparative study of different thresholding techniques for image denoising in Framelet transform domain. The idea is to transform the data into the Framelet basis, example shrinkage followed by the inverse transform. In this work different shrinkage rules such as universal shrink(US),Visu shrink (VS), Minmax shrink(MS), Sure shrink(SS) , Bayes shrink(BS) and Normal shrink(NS) were incorporated . Results based on different noise such as Gausssian noise, Poission noise , Salt and pepper noise and Speckle noise at (??=10,20) performed in this paper and peak signal to noise ratio (PSNR) and Structural similarity index measure(SSIM) as a measure of the quality of denoising was performed.

Keywords: Discrete Wavelet Transform(DWT); Framelet Transform(FT); Peak signal to noise ratio(PSNR); Structural similarity index measure(SSIM).

S. Sulochana and R.Vidhya, “Image Denoising using Adaptive Thresholding in Framelet Transform Domain” International Journal of Advanced Computer Science and Applications(IJACSA), 3(9), 2012. http://dx.doi.org/10.14569/IJACSA.2012.030929

@article{Sulochana2012,
title = {Image Denoising using Adaptive Thresholding in Framelet Transform Domain},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2012.030929},
url = {http://dx.doi.org/10.14569/IJACSA.2012.030929},
year = {2012},
publisher = {The Science and Information Organization},
volume = {3},
number = {9},
author = {S. Sulochana and R.Vidhya}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org