The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Hybrid Algorithm for the Optimization of Training Convolutional Neural Network

Author 1: Hayder M. Albeahdili
Author 2: Tony Han
Author 3: Naz E. Islam

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2015.061011

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 6 Issue 10, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The training optimization processes and efficient fast classification are vital elements in the development of a convolution neural network (CNN). Although stochastic gradient descend (SGD) is a Prevalence algorithm used by many researchers for the optimization of training CNNs, it has vast limitations. In this paper, it is endeavor to diminish and tackle drawbacks inherited from SGD by proposing an alternate algorithm for CNN training optimization. A hybrid of genetic algorithm (GA) and particle swarm optimization (PSO) is deployed in this work. In addition to SGD, PSO and genetic algorithm (PSO-GA) are also incorporated as a combined and efficient mechanism in achieving non trivial solutions. The proposed unified method achieves state-of-the-art classification results on the different challenge benchmark datasets such as MNIST, CIFAR-10, and SVHN. Experimental results showed that the results outperform and achieve superior results to most contemporary approaches.

Keywords: Convolutional Neural Network; Particle Swarm optimization; Image Classification

Hayder M. Albeahdili, Tony Han and Naz E. Islam, “Hybrid Algorithm for the Optimization of Training Convolutional Neural Network” International Journal of Advanced Computer Science and Applications(IJACSA), 6(10), 2015. http://dx.doi.org/10.14569/IJACSA.2015.061011

@article{Albeahdili2015,
title = {Hybrid Algorithm for the Optimization of Training Convolutional Neural Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2015.061011},
url = {http://dx.doi.org/10.14569/IJACSA.2015.061011},
year = {2015},
publisher = {The Science and Information Organization},
volume = {6},
number = {10},
author = {Hayder M. Albeahdili and Tony Han and Naz E. Islam}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org