The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Runtime Analysis of GPU-Based Stereo Matching

Author 1: Christian Zentner
Author 2: Yan Liu

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2015.061138

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 6 Issue 11, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper elaborates on the possibility to leverage the highly parallel nature of GPUs to implement more efficient stereo matching algorithms. Different algorithms have been implemented and compared on the CPU and the GPU in order to show the speedup gained by moving the computation to the graphics card. The results were evaluated for accuracy using the test available on the Middlebury website for stereo vision. An assessment of the runtime performance was done by a script which examined the runtime behaviour of the individual steps of the stereo matching algorithm.

Keywords: stereo matching; GPU computing; runtime analysis; computer vision; image processing

Christian Zentner and Yan Liu, “Runtime Analysis of GPU-Based Stereo Matching” International Journal of Advanced Computer Science and Applications(IJACSA), 6(11), 2015. http://dx.doi.org/10.14569/IJACSA.2015.061138

@article{Zentner2015,
title = {Runtime Analysis of GPU-Based Stereo Matching},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2015.061138},
url = {http://dx.doi.org/10.14569/IJACSA.2015.061138},
year = {2015},
publisher = {The Science and Information Organization},
volume = {6},
number = {11},
author = {Christian Zentner and Yan Liu}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org