Future of Information and Communication Conference (FICC) 2025
28-29 April 2025
Publication Links
IJACSA
Special Issues
Future of Information and Communication Conference (FICC)
Computing Conference
Intelligent Systems Conference (IntelliSys)
Future Technologies Conference (FTC)
International Journal of Advanced Computer Science and Applications(IJACSA), Volume 6 Issue 12, 2015.
Abstract: Multi-objective EAs (MOEAs) are well established population-based techniques for solving various search and optimization problems. MOEAs employ different evolutionary operators to evolve populations of solutions for approximating the set of optimal solutions of the problem at hand in a single simulation run. Different evolutionary operators suite different problems. The use of multiple operators with a self-adaptive capability can further improve the performance of existing MOEAs. This paper suggests an enhanced version of a genetically adaptive multi-algorithm for multi-objective (AMAL-GAM) optimisation which includes differential evolution (DE), particle swarm optimization (PSO), simulated binary crossover (SBX), Pareto archive evolution strategy (PAES) and simplex crossover (SPX) for population evolution during the course of optimization. We examine the performance of this enhanced version of AMALGAM experimentally over two different test suites, the ZDT test problems and the test instances designed recently for the special session on MOEA’s competition at the Congress of Evolutionary Computing of 2009 (CEC’09). The suggested algorithm has found better approximate solutions on most test problems in terms of inverted generational distance (IGD) as the metric indicator.
Wali Khan Mashwani, Abdellah Salhi, Muhammad Asif jan, Rashida Adeeb Khanum and Muhammad Sulaiman, “Enhanced Version of Multi-algorithm Genetically Adaptive for Multiobjective optimization” International Journal of Advanced Computer Science and Applications(IJACSA), 6(12), 2015. http://dx.doi.org/10.14569/IJACSA.2015.061237
@article{Mashwani2015,
title = {Enhanced Version of Multi-algorithm Genetically Adaptive for Multiobjective optimization},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2015.061237},
url = {http://dx.doi.org/10.14569/IJACSA.2015.061237},
year = {2015},
publisher = {The Science and Information Organization},
volume = {6},
number = {12},
author = {Wali Khan Mashwani and Abdellah Salhi and Muhammad Asif jan and Rashida Adeeb Khanum and Muhammad Sulaiman}
}
Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.