The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080126
PDF

Discovering Semantic and Sentiment Correlations using Short Informal Arabic Language Text

Author 1: Salihah AlOtaibi
Author 2: Muhammad Badruddin Khan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 1, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Semantic and Sentiment analysis have received a great deal of attention over the last few years due to the important role they play in many different fields, including marketing, education, and politics. Social media has given tremendous opportunities for researchers to collect huge amount of data as input for their semantic and sentiment analysis. Using twitter API, we collected around 4.5 million Arabic tweets and used them to propose a novel automatic unsupervised approach to capture patterns of words and sentences of similar contextual semantics and sentiment in informal Arabic language at word and sentence levels. We used Language Modeling (LM) model which is statistical model that can estimate the distribution of natural language in effective way. The results of experiments of proposed model showed better performance than classic bigram and latent semantic analysis (LSA) model in most of cases at word level. In order to handle the big data, we used different text processing techniques followed by removal of the unique words based on their rele Informal Arabic, Big Data, Sentiment analysis, Opinion Mining (OM), semantic analysis, bigram model, LSA model, Twitter vance to problem.

Keywords: Opinion Mining; Sentiment analysis; semantic analysis; Twitter; Informal Arabic

Salihah AlOtaibi and Muhammad Badruddin Khan, “Discovering Semantic and Sentiment Correlations using Short Informal Arabic Language Text” International Journal of Advanced Computer Science and Applications(IJACSA), 8(1), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080126

@article{AlOtaibi2017,
title = {Discovering Semantic and Sentiment Correlations using Short Informal Arabic Language Text},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080126},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080126},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {1},
author = {Salihah AlOtaibi and Muhammad Badruddin Khan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org