The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080153
PDF

Mobile Sensing for Data-Driven Mobility Modeling

Author 1: Kashif Zia
Author 2: Arshad Muhammad
Author 3: Katayoun Farrahi
Author 4: Dinesh Kumar Saini

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 1, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The use of mobile sensed location data for realistic human track generation is privacy sensitive. People are unlikely to share their private mobile phone data if their tracks were to be simulated. However, the ability to realistically generate human mobility in computer simulations is critical for advances in many domains, including urban planning, emergency handling, and epidemiology studies. In this paper, we present a data-driven mobility model to generate human spatial and temporal movement patterns on a real map applied to an agent based setting. We address the privacy aspect by considering collective participant transitions between semantic locations, defined in a privacy preserving way. Our modeling approach considers three cases which decreasingly use real data to assess the value in generating realistic mobility, considering data of 89 participants over 6079 days. First, we consider a dynamic case which uses data on a half-hourly basis. Second, we consider a data-driven case without time of day dynamics. Finally, we consider a homogeneous case where the transitions between locations are uniform, random, and not data-driven. Overall, we find the dynamic data-driven case best generates the semantic transitions of previously unseen participant data.

Keywords: mobile sensing; data-driven mobility model; agent based models

Kashif Zia, Arshad Muhammad, Katayoun Farrahi and Dinesh Kumar Saini, “Mobile Sensing for Data-Driven Mobility Modeling” International Journal of Advanced Computer Science and Applications(IJACSA), 8(1), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080153

@article{Zia2017,
title = {Mobile Sensing for Data-Driven Mobility Modeling},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080153},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080153},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {1},
author = {Kashif Zia and Arshad Muhammad and Katayoun Farrahi and Dinesh Kumar Saini}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org