The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081205
PDF

Training an Agent for FPS Doom Game using Visual Reinforcement Learning and VizDoom

Author 1: Khan Adil
Author 2: Feng Jiang
Author 3: Shaohui Liu
Author 4: Aleksei Grigorev
Author 5: B.B. Gupta
Author 6: Seungmin Rho

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 12, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Because of the recent success and advancements in deep mind technologies, it is now used to train agents using deep learning for first-person shooter games that are often outperforming human players by means of only screen raw pixels to create their decisions. A visual Doom AI Competition is organized each year on two different tracks: limited death-match on a known map and a full death-match on an unknown map for evaluating AI agents, because computer games are the best test-beds for testing and evaluating different AI techniques and approaches. The competition is ranked based on the number of frags each agent achieves. In this paper, training a competitive agent for playing Doom’s (FPS Game) basic scenario(s) in a semi-realistic 3D world ‘VizDoom’ using the combination of convolutional Deep learning and Q-learning by considering only the screen raw pixels in order to exhibit agent’s usefulness in Doom is proposed. Experimental results show that the trained agent outperforms average human player and inbuilt game agents in basic scenario(s) where only move left, right and shoot actions are allowed.

Keywords: Visual reinforcement learning; Deep Q-learning; FPS; CNN; computational intelligence; Game-AI; VizDoom; agent; bot; DOOM

Khan Adil, Feng Jiang, Shaohui Liu, Aleksei Grigorev, B.B. Gupta and Seungmin Rho, “Training an Agent for FPS Doom Game using Visual Reinforcement Learning and VizDoom” International Journal of Advanced Computer Science and Applications(IJACSA), 8(12), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081205

@article{Adil2017,
title = {Training an Agent for FPS Doom Game using Visual Reinforcement Learning and VizDoom},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081205},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081205},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {12},
author = {Khan Adil and Feng Jiang and Shaohui Liu and Aleksei Grigorev and B.B. Gupta and Seungmin Rho}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org