The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080714
PDF

New Divide and Conquer Method on Endmember Extraction Techniques

Author 1: Ihab Samir
Author 2: Bassam Abdellatif
Author 3: Amr Badr

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 7, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In hyperspectral imagery, endmember extraction (EE) is a main stage in hyperspectral unmixing process where its role lies in extracting distinct spectral signature, endmembers, from hyperspectral image which is considered as the main input for unsupervised hyperspectral unmixing to generate the abundance fractions for every pixel in hyperspectral data. EE process has some difficulties. There are less distinct endmembers than its mixed background; also, there are endmembers that have rare occurrences in data that are considered as difficulties in EE process. In this paper, we propose a new technique that uses divide and conquer method for EE process to find out these difficult (rare or less distinct) endmembers. divide and conquer method is used to divide hyperspectral data scene to multiple divisions and take each division as a standalone scene to enable endmember extraction algorithms (EEAs) to extract difficult endmembers easily and finally conquer all extracted endmembers from all divisions. We implemented this method on real dataset using three EEAs: ATGP, VCA, and SGA and recorded the results that outperform the results from usual endmember extraction techniques methods in all used algorithms.

Keywords: Endmember extraction algorithm (EEA); endmember extraction (EE); automatic target generation process (ATGP); hyperspectral imagery; simplex growing algorithm (SGA); hyperspectral unmixing; vertex component analysis (VCA); divide and conquer method

Ihab Samir, Bassam Abdellatif and Amr Badr, “New Divide and Conquer Method on Endmember Extraction Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 8(7), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080714

@article{Samir2017,
title = {New Divide and Conquer Method on Endmember Extraction Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080714},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080714},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {7},
author = {Ihab Samir and Bassam Abdellatif and Amr Badr}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org