The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Classification of Affective States via EEG and Deep Learning

Author 1: Jason Teo
Author 2: Lin Hou Chew
Author 3: Jia Tian Chia
Author 4: James Mountstephens

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2018.090517

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 5, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Human emotions play a key role in numerous decision-making processes. The ability to correctly identify likes and dislikes as well as excitement and boredom would facilitate novel applications in neuromarketing, affective entertainment, virtual rehabilitation and forensic neuroscience that leverage on sub-conscious human affective states. In this neuroinformatics investigation, we seek to recognize human preferences and excitement passively through the use of electroencephalography (EEG) when a subject is presented with some 3D visual stimuli. Our approach employs the use of machine learning in the form of deep neural networks to classify brain signals acquired using a brain-computer interface (BCI). In the first part of our study, we attempt to improve upon our previous work, which has shown that EEG preference classification is possible although accuracy rates remain relatively low at 61%-67% using conventional deep learning neural architectures, where the challenge mainly lies in the accurate classification of unseen data from a cohort-wide sample that introduces inter-subject variability on top of the existing intra-subject variability. Such an approach is significantly more challenging and is known as subject-independent EEG classification as opposed to the more commonly adopted but more time-consuming and less general approach of subject-dependent EEG classification. In this new study, we employ deep networks that allow dropouts to occur in the architecture of the neural network. The results obtained through this simple feature modification achieved a classification accuracy of up to 79%. Therefore, this study has shown that the use of a deep learning classifier was able to achieve an increase in emotion classification accuracy of between 13% and 18% through the simple adoption of the use of dropouts compared to a conventional deep learner for EEG preference classification. In the second part of our study, users are exposed to a roller-coaster experience as the emotional stimuli which are expected to evoke the emotion of excitement, while simultaneously wearing virtual reality goggles, which delivers the virtual reality experience of excitement, and an EEG headset, acquires the raw brain signals detected when exposed to this excitement stimuli. Here, a deep learning approach is used to improve the excitement detection rate to well above the 90% accuracy level. In a prior similar study, the use of conventional machine learning approaches involving k-Nearest Neighbour (kNN) classifiers and Support Vector Machines (SVM) only achieved prediction accuracy rates of between 65% and 89%. Using a deep learning approach here, rates of 78%-96% were achieved. This demonstrates the superiority of adopting a deep learning approach over other machine learning approaches for detecting human excitement when immersed in an immersive virtual reality environment.

Keywords: Neuroinformatics; emotion classification; preference classification; excitement classification; electroencephalography (EEG); deep learning; virtual reality; dropouts.

Jason Teo, Lin Hou Chew, Jia Tian Chia and James Mountstephens, “Classification of Affective States via EEG and Deep Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 9(5), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090517

@article{Teo2018,
title = {Classification of Affective States via EEG and Deep Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090517},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090517},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {5},
author = {Jason Teo and Lin Hou Chew and Jia Tian Chia and James Mountstephens}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org