Paper 1: Novel Altered Region for Biomarker Discovery in Hepatocellular Carcinoma (HCC) Using Whole Genome SNP Array
Abstract: cancer represents one of the greatest medical causes of mortality. The majority of Hepatocellular carcinoma arises from the accumulation of genetic abnormalities, and possibly induced by exterior etiological factors especially HCV and HBV infections. There is a need for new tools to analysis the large sum of data to present relevant genetic changes that may be critical for both understanding how cancers develop and determining how they could ultimately be treated. Gene expression profiling may lead to new biomarkers that may help develop diagnostic accuracy for detecting Hepatocellular carcinoma. In this work, statistical technique (discrete stationary wavelet transform) for detection of copy number alternations to analysis high-density single-nucleotide polymorphism array of 30 cell lines on specific chromosomes, which are frequently detected in Hepatocellular carcinoma have been proposed. The results demonstrate the feasibility of whole-genome fine mapping of copy number alternations via high-density single-nucleotide polymorphism genotyping, Results revealed that a novel altered chromosomal region is discovered; region amplification (4q22.1) have been detected in 22 out of 30-Hepatocellular carcinoma cell lines (73%). This region strike, AFF1 and DSPP, tumor suppressor genes. This finding has not previously reported to be involved in liver carcinogenesis; it can be used to discover a new HCC biomarker, which helps in a better understanding of hepatocellular carcinoma.
Keywords: Hepatocellular carcinoma; copy number alternation; biomarkers; single-nucleotide polymorphism